Structure‐preserving methods for a coupled port‐Hamiltonian system of compressible non‐isothermal fluid flow

Author:

Hauschild Sarah‐Alexa1ORCID,Marheineke Nicole1

Affiliation:

1. Universität Trier Trier Germany

Abstract

AbstractThe port‐Hamiltonian (pH) formulation of partial‐differential equations and their numerical treatment have been elaborately studied lately. One advantage of pH‐systems is that fundamental physical properties, like energy dissipation and mass conservation, are encoded in the system structure. Therefore, structure‐preservation is most important during all stages of approximation and system coupling. In this context we consider the non‐isothermal flow of a compressible fluid through a network of pipes. Based on a pH‐formulation of Euler‐type equations on one pipe, we introduce coupling conditions, through which we can realize energy, mass and entropy conservation at the coupling nodes and thus, preserve the pH‐structure. We implement them through an input‐output‐coupling using the flow and effort variables of the boundary port. Thus, we can make use of the structure‐preserving model and complexity reduction techniques for the single pipe. This procedure becomes even more important for network simulations, as here, we deal with high dimensional and highly non‐linear dynamical systems. We explain the extension from a single pipe to a network and numerical examples are shown to support our findings.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference8 articles.

1. Egger H.(2016).A mixed variational discretization for non‐isothermal compressible flow in pipelines. arXiv:1611.03368.

2. Structure‐preserving discretization of a port‐Hamiltonian formulation of the non‐isothermal Euler equations

3. Mehrmann V. &Morandin R.(2019).Structure‐preserving discretization for port‐Hamiltonian descriptor systems Nice France (pp.6863–6868).

4. Villegas J.(2007).A port‐Hamiltonian approach to distributed parameter systems. [PhD Thesis].University of Twente.

5. On Port-Hamiltonian Approximation of a Nonlinear Flow Problem on Networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3