Affiliation:
1. Chair for Computational Analysis of Technical Systems RWTH Aachen University
2. Institute of Lightweight Design and Structural Biomechanics TU Wien
3. Information Management in Mechanical Engineering RWTH Aachen University
Abstract
AbstractProfile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to impart the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one [1]. To avoid these deviations, we want to optimize the shape of the flow channel inside the die computationally. This has already been investigated in the literature using conventional optimization approaches [2,3].In this work, we investigate the feasibility of Reinforcement Learning (RL) as a learning‐based approach for shape optimization. RL is based on trial‐and‐error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment, which for this application stems from a high‐fidelity Finite Element Method (FEM) simulation.We will introduce a 2D test case as a proof‐of‐concept, in which an RL agent learns to change the geometry of a flow channel by modifying its representation as computational mesh through a spline‐based deformation method known as Free Form Deformation (FFD) [4]. We will show that an agent can be trained to optimize the geometry for different values of the quantity of interest and that the learning behavior is reproducible, which renders the RL‐based approach promising for further research.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献