Towards an analysis of damage progression in concrete pavements using machine learning and computer vision

Author:

Garita‐Durán Hellen1ORCID,Elizondo‐Arrieta Fabian2,Barrantes‐Jiménez Roy2,Kaliske Michael1ORCID

Affiliation:

1. Institute for Structural Analysis Technische Universität Dresden Dresden Germany

2. LanammeUCR University of Costa Rica San Pedro Costa Rica

Abstract

AbstractIn the field of pavement damage analysis, long‐term damage monitoring and assessment remain a formidable challenge due to the dynamic nature of damage development and environmental changes. This study presents preliminary progress towards a system for tracking and analyzing the progression of pavement deterioration over time using image datasets of real concrete pavement. The research focuses on specific road sections, with annual data collection over three years, resulting in a time‐series dataset with detailed spatiotemporal information. The proposed methodology integrates GPS data for precise location mapping and employs advanced image analysis techniques to consistently identify and monitor pavement damages across different time frames. Image rectification and alignment processes are applied to ensure comparability in detail and orientation. The current status of the project is presented, including initial implementations of the methodology, limitations encountered, and suggestions for improvement in data collection. The goal is to establish a robust and replicable methodology that facilitates understanding the evolution of pavement damage. This spatiotemporal matching approach aims to lay the foundation for agencies to monitor the progression of issues and enable timely interventions throughout the pavement life cycle.

Funder

Universidad de Costa Rica

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3