Analysis of the microstructural connectivity and compressive behavior of particle aggregated silica aerogels

Author:

Xiong Weibo1ORCID,Abdusalamov Rasul1ORCID,Itskov Mikhail1,Milow Barbara2,Rege Ameya2ORCID

Affiliation:

1. Department of Continuum Mechanics RWTH Aachen University Aachen Germany

2. Department of Aerogels and Aerogel Composites Institute of Materials Research, German Aerospace Center Cologne Germany

Abstract

AbstractPorous media such as aerogels can exhibit unique properties including low thermal conductivity, low bulk density, and low sound velocity. However, the limited mechanical properties of aerogels restrict their widespread application. This study focuses on understanding the mechanical behavior of aggregated silica aerogels by investigating their microstructural connectivity and densification mechanisms under uniaxial compression. The interparticle connectivity is generated using the diffusion‐limited cluster–cluster aggregation (DLCA) algorithm, and the particle connections are modeled by beam elements that account for contact interaction. The mechanical response of representative volume elements (RVEs) is analyzed in both linear and nonlinear regimes while applying periodic boundary conditions. The model is correlated with experimental compression test data to validate the simulation results. With increasing compressive strain, load transitions between multiple backbone paths appear in the network structure. Thus, the simulation model provides insight into the compression process. Moreover, the simulation model enables the examination of the influence of various model parameters and facilitates the evaluation of the power–law relationship between the elasticity modulus and porosity of aerogels.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3