Analysis of viscous incompressible flows of micropolar fluidswith thermal convection and mixed boundary conditions

Author:

Beneš Michal1

Affiliation:

1. Department of Mathematics Faculty of Civil Engineering Czech Technical University in Prague Thákurova 7 166 29 Prague 6 Czech Republic

Abstract

AbstractThe Navier‐Stokes equations do not take into account the microstructure of the fluid in the sense that they do not consider the angular momentum of small particles of the fluid due to their rotation. The model of micropolar fluid represents a generalization of the well‐established Navier‐Stokes equations, in such a way that it introduces a new kinematic vector field called microrotation (the angular velocity field of rotation of particles) and adds a new vectorial equation, expressing the conservation of the angular momentum. We will be concerned with the initial boundary value problem for the flow of micropolar heat conducting fluids in a two‐dimensional channel with mixed boundary conditions. The considered boundary conditions are of three types: the Dirichlet boundary conditions on the inflow, the Navier type conditions on solid surfaces and Neumann‐type boundary conditions on the outflow of the channel. The homogeneous Dirichlet boundary conditions on solid surfaces for the microrotation is commonly used in practice. However, imposing such condition is doubtful from the physical point of view. For that reason, more general boundary conditions for the microrotation were proposed throughout the engineering literature to take into account the rotation of the microelements on the solid boundary, linking the velocity and microrotation through the so‐called boundary viscosity. The well‐posedness of problems with different types of boundary conditions for microrotation are completely unexplored. The present contribution is devoted to the analysis of the existence and uniqueness of the solution.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3