A model order reduction technique for the linearised compressible flow equations

Author:

Toth Florian1,Luo Likun1

Affiliation:

1. Institute of Mechanics and Mechatronics TU Wien Getreidemarkt 9 1060 Vienna Austria

Abstract

AbstractViscous effects in acoustics are significant if the thickness of the oscillating viscous boundary layer (Stokes boundary layer) becomes comparable to characteristic problem dimensions. For air as an acoustic medium, this is frequently the case in small‐scale devices like micro‐electro‐mechanical systems or micro‐perforated panels for sound absorption. Accurate modelling of viscous effects can be done by the solution of the linearised compressible flow equations by the finite element method, which is computationally demanding due to the high number of unknowns arising in the problem: pressure, velocity and temperature. Furthermore, the discretisation must resolve the thin viscous boundary layers, creating a model with a high number of degrees of freedom. We suggest a projection‐based model order reduction procedure using the system eigenmodes as generalised coordinates. The procedure is tested based on a simple example problem in 2D. Here we show that the derived reduced order model is accurate and computationally highly efficient. The number of degrees of freedom can be reduced by several orders of magnitude, from around 30 000 to 100, thereby dramatically reducing the computation time for harmonic solutions.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Reference10 articles.

1. M. Berggren A. Bernland and D. Noreland Journal of Computational Physics 371 633–650 (2018).

2. W. R. Kampinga Y. H. Wijnant and A. de Boer Acta Acustica united with Acustica 96(1) 115–124 (2010).

3. M. Géradin and D. Rixen Mechanical vibrations: theory and application to structural dynamics 2 edition (Wiley Chichester [u.a.] 1997).

4. F. Toth H. Hassanpour Guilvaiee and G. Jank e & i Elektrotechnik und Informationstechnik (2021).

5. F. Toth M. Kaltenbacher and F. Wein https://opencfs.org.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3