Hybrid convolutional long short‐term memory models for sales forecasting in retail

Author:

de Castro Moraes Thais12ORCID,Yuan Xue‐Ming23,Chew Ek Peng1

Affiliation:

1. Department of Industrial Systems Engineering and Management National University of Singapore Singapore

2. Singapore Institute of Manufacturing Technology Agency for Science Technology and Research (A*STAR) Singapore

3. Institute of Operations Research and Analytics National University of Singapore Singapore Singapore

Abstract

AbstractThis study proposes novel sales forecasting approaches that merge deep learning methods in a hybrid model. Long short‐term memory (LSTM) is adopted for modeling the temporal characteristics of the data, whereas the convolutional neural network (CNN) focuses on identifying and extracting relevant exogenous information. We propose stacked (S‐CNN‐LSTM) and parallel (P‐CNN‐LSTM) hybrid architectures to understand complex time series data with varying seasonal patterns and multiple products correlations. The performance drivers of both architectures were empirically tested with a real‐world multivariate retail dataset and outperformed when compared with simple neural network architectures and standard autoregressive methods for short and long‐term forecasting horizons. When compared with traditional predictive approaches, the proposed hybrid models reduce the computational complexity while providing flexibility and robustness.

Funder

Agency for Science, Technology and Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retail Demand Forecasting Using Temporal Fusion Transformer;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3