Structural Health Monitoring of a steel truss railway bridge studying its low frequency response

Author:

Radicioni Luca1,Bernardini Lorenzo1,Bono Francesco Morgan1,Anghileri Mattia2,Capacci Luca2,Cazzulani Gabriele1,Somaschini Claudio1,Pande Aniket Ketan1,Biondini Fabio2,Cinquemani Simone1,Belloli Marco1

Affiliation:

1. Department of Mechanical Engineering Politecnico di Milano Milano Italy

2. Department of Civil and Environmental Engineering Politecnico di Milano Milano Italy

Abstract

AbstractIn the framework of direct Structural Health Monitoring approaches, this paper presents a low frequency range analysis performed on a steel truss bridge designed in 1946 and built up in Northern Italy. The bridge is instrumented with a permanent structural health monitoring system, that guarantees a continuous flux of data and information from a heterogeneous set of sensors. In this analysis, static and quasistatic bridge responses are considered. These experimental data are merged with the analogous outputs obtained from numerical simulations, performed on FE models representative of the actual bridge, with the purpose of identifying damage‐sensitive indexes. Simulations are performed considering the healthy structure and modelling different damage scenarios. The static analysis consists in the construction of a regressive model able to estimate sensor output responses starting from environmental measurements, with the primary purpose to reduce the effect of temperature over measured static response. This procedure allows to relate the damages simulated by means of a numerical model with the real data, so that the monitoring rules can effectively defined.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3