Affiliation:
1. National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, School of Chemical Engineering Xiangtan University Xiangtan Hunan China
2. School of Mathematics and Computational Science Xiangtan University Xiangtan Hunan China
Abstract
AbstractThe collision of bubbles in multiphase reactors is critical to bubble size distribution. However, the theoretical models that can reasonably predict collision outcomes and the experimental data that can be used to directly verify the models are still very lacking. We studied the collision of two bubbles in clean water through experiments and theoretical modeling, revealing the mechanism that the collision result shifts from coalescence to rebound with increasing collision velocity. The macroscopic deformation (MacrD) of bubbles is associated with the film drainage via a segmented linear equation as a function of the film radius and initial Weber number. Thus, the current model can reflect the effect of MacrD in a self‐consistent way. The coalescence times and critical coalescence velocities predicted by the model were in good agreement with the experiments. This work provides novel insights into bubble coalescence modeling and serves to improve the accuracy of reactor simulations.
Funder
Hunan Provincial Innovation Foundation for Postgraduate
National Natural Science Foundation of China
Subject
General Chemical Engineering,Environmental Engineering,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献