Precipitation variability related to atmospheric circulation patterns over the Tibetan Plateau

Author:

Lai Hui‐Wen1ORCID,Chen Deliang1ORCID,Chen Hans W.2ORCID

Affiliation:

1. Department of Earth Sciences University of Gothenburg Gothenburg Sweden

2. Department of Space, Earth and Environment Chalmers University of Technology Gothenburg Sweden

Abstract

AbstractPrecipitation is affected by intricate atmospheric dynamic and thermodynamic processes. Horizontal winds are frequently used to represent the dynamic component as winds play a critical role in transporting moisture. Previous studies on precipitation over the Tibetan Plateau (TP) focused on the influence of summer monsoons and westerlies in isolation. However, the collective seasonal dynamics and their combined effects on the precipitation distribution remain less explored. This study aims to determine the seasonal evolutions of the wind patterns and the associated regional precipitation patterns over the TP using a neural network approach and focuses on their interannual variability and long‐term trends. A self‐organizing map (SOM) was used to classify the wind patterns based on 500 hPa winds and related precipitation from the ERA5 reanalysis. The classified wind patterns show seasonal shifts between the Asian summer monsoon circulations and the westerlies along with the westerly jets migrating between the north and south of the TP from summer to winter. The locations of abundant precipitation during the winter and transition seasons are mainly associated with variations in the intensity and locations of the strong westerlies. There is a significant positive trend in the occurrences of the summer‐type wind pattern, which has likely led to a wetter TP, and an earlier‐ended winter and advanced spring wind patterns. The interannual variability of westerlies is highly related to the variability of precipitation in the western TP during its wet season (January–April). In the eastern TP, the interannual variability of the precipitation is linked to the wind patterns associated with the westerly jets to the south of the TP, while precipitation variability in the central TP is controlled by thermodynamic components. This study reveals the spatial precipitation distributions according to the different wind patterns and identifies the contributions from atmospheric components to the regional precipitation over the TP.

Funder

Swedish National Space Agency

Vetenskapsrådet

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3