Soil moisture precipitation feedbacks in the Eastern European Alpine region in convection‐permitting climate simulations

Author:

Truhetz Heimo1ORCID,Mishra Aditya N.1ORCID

Affiliation:

1. Wegener Center for Climate and Global Change (WEGC) University of Graz Graz Austria

Abstract

AbstractA novel convection permitting modelling framework that combines a pseudo‐global warming approach with continuously forced deep soil moisture from prescribed perturbation storylines is applied in the Eastern European Alpine region and parts of the Pannonian Basin to investigate soil moisture precipitation (SMP) feedbacks on summertime precipitation and the feedbacks’ role under changed climate conditions. A set of 1‐year convection‐permitting (3 km horizontal grid spacing) soil moisture sensitivity simulations with the regional climate model of the Consortium for Small‐Scale Modelling in Climate Mode are conducted. In order to account for global warming, end‐of‐the‐century climate change effects from four global climate models, projecting the greenhouse gas concentration scenario RCP 8.5, are imprinted. The simulations reveal that (1) the locations of precipitation events are highly sensitive to soil moisture modifications while intensities and the internal structure of precipitation events are nearly unaffected and (2) high precipitation intensities are more likely in combinations with positive temporal but distinctive (either strong positive or strong negative) spatial SMP coupling. Low precipitation intensities are in favour of combinations of negative temporal and positive spatial coupling. The analyses suggest that soil moisture at a given time acts as a guiding field for the location of the next precipitation event. Interestingly, this behaviour is independent of climate change, although the coupling strength's increase is 1.5–1.7 times larger than expected from linear climate change scaling when climate becomes 50% dryer. Finally, it is found that (1) local deviations in the climate change signal of summertime precipitation in the range of up to ±40% are caused by uncertainty in deep soil moisture in the range of ±10% and (2) these local deviations in the climate change signal are dominated by soil moisture uncertainty in future climate conditions.

Funder

Austrian Science Fund

Johnson Space Center

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3