A preliminary investigation of water storage in check‐dams across China's Loess Plateau using electrical resistivity tomography

Author:

Liu Chenggong12ORCID,Jia Xiaoxu12,Ren Lidong1ORCID,Duan Guoxiu3,Shao Ming'an123

Affiliation:

1. Key Laboratory of Ecosystems Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China

2. College of Resources and Environment University of Chinese Academy of Sciences Beijing China

3. College of Natural Resources and Environment Northwest A&F University Yangling Shaanxi China

Abstract

AbstractCheck dams are typical deposition sites that trap and store eroded sediments from uplands and are widely constructed on China's Loess Plateau (LP) as an effective soil and water conservation practice. Compared with slope land (SL), check‐dam land (DL) may store more water resources and play an important role in food production and water regulation in watersheds. However, little is known about the water distribution characteristics and driving factors of DL. In this study, we investigated seven DLs in different regions of the LP and four SLs under different land uses using the non‐invasive electrical resistivity tomography (ERT) technique and established a nonlinear model correlating electrical resistivity (ρ) and soil water content (θv). The results showed that θv can be successfully estimated by ρ using the power function model according to the coefficient of determination (R2 = 0.77) and root‐mean‐square error (RMSE = 0.035 cm3/cm3), indicating that ERT is applicable for estimating water resources in the loessal region. Generally, the distribution of DL water resources can be divided into three types: (i) unsaturated throughout the entire profile, (ii) unsaturated in the top but saturated in the lower profile and (iii) approximately saturated throughout the profile with minimal spatial variation. The different water distribution characteristics among the DLs may be related to the soil texture, land use type and drainage facility. The total mean water storage in the 0–4 m profile of DL for different land‐use types was 1.5–2.0 times higher than that of SL. Therefore, DL water stores should not be ignored when assessing hydrological cycles and the water budget in a watershed in the LP. Future research should be implemented to understand the hydrological processes and ecological effects of both DL and SL to optimize water management strategies with sustainable ecosystem functions in the loessal region.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3