High‐entropy configuration strategy boosts excellent rate performance of layered oxide for sodium‐ion batteries

Author:

Cai Qiuyun1,Liu Xiangyu1,Hu Haonan1,Wang Pengfei1,Jia Min1ORCID,Zhang Xiaoyu1ORCID

Affiliation:

1. School of Material Science and Engineering Jiangsu University Zhenjiang China

Abstract

AbstractLayered oxides are considered to be potential cathodes for sodium‐ion batteries based on high theoretical capacity and ease of synthesis. However, the complex phase transition caused by interlayer sliding in layered oxides leads to poor cycling stability, which will hinder their further application. Here, we designed a newly O3‐type layered cathode NaNi0.3Co0.2Cu0.1Mn0.2Ti0.2O2 based on high‐entropy to achieve highly reversible phase transition behavior. It reveals 132 mAh g−1 at 0.2 C within 2–4 V increasing the energy density to 408 Wh kg−1 and it shows an outstanding rate capability of 90 mAh g−1 at 80 C (84.90% capacity retention after 1,500 cycles at 80 C). In‐situ XRD shows that reasonable design of high‐entropy components in layered material can achieve the purpose of delaying the occurrence of phase transition and DFT calculations show that the introduction of Co in transition metal layers can effectively improve the rate performance of the material. This work is of great significance in guiding the design and synthesis of highly stable layered cathode materials for sodium‐ion batteries.

Funder

National Natural Science Foundation of China

Government of Jiangsu Province

Jiangsu University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3