Data‐driven classification of cognitively normal and mild cognitive impairment subtypes predicts progression in the NACC dataset

Author:

Edmonds Emily C.12,Thomas Kelsey R.34,Rapcsak Steven Z.125,Lindemer Shannon L.1,Delano‐Wood Lisa46,Salmon David P.7,Bondi Mark W.46

Affiliation:

1. Banner Alzheimer's Institute Tucson Arizona USA

2. Departments of Neurology and Psychology University of Arizona Tucson Arizona USA

3. Research Service, Veterans Affairs San Diego Healthcare System San Diego California USA

4. Department of Psychiatry University of California, San Diego La Jolla California USA

5. Department of Speech, Language, & Hearing Sciences University of Arizona Tucson Arizona USA

6. Psychology Service, Veterans Affairs San Diego Healthcare System San Diego California USA

7. Department of Neurosciences University of California, San Diego La Jolla California USA

Abstract

AbstractINTRODUCTIONData‐driven neuropsychological methods can identify mild cognitive impairment (MCI) subtypes with stronger associations to dementia risk factors than conventional diagnostic methods.METHODSCluster analysis used neuropsychological data from participants without dementia (mean age = 71.6 years) in the National Alzheimer's Coordinating Center (NACC) Uniform Data Set (n = 26,255) and the “normal cognition” subsample (n = 16,005). Survival analyses examined MCI or dementia progression.RESULTSFive clusters were identified: “Optimal” cognitively normal (oCN; 13.2%), “Typical” CN (tCN; 28.0%), Amnestic MCI (aMCI; 25.3%), Mixed MCI‐Mild (mMCI‐Mild; 20.4%), and Mixed MCI‐Severe (mMCI‐Severe; 13.0%). Progression to dementia differed across clusters (oCN < tCN < aMCI < mMCI‐Mild < mMCI‐Severe). Cluster analysis identified more MCI cases than consensus diagnosis. In the “normal cognition” subsample, five clusters emerged: High‐All Domains (High‐All; 16.7%), Low‐Attention/Working Memory (Low‐WM; 22.1%), Low‐Memory (36.3%), Amnestic MCI (16.7%), and Non‐amnestic MCI (naMCI; 8.3%), with differing progression rates (High‐All < Low‐WM = Low‐Memory < aMCI < naMCI).DISCUSSIONOur data‐driven methods outperformed consensus diagnosis by providing more precise information about progression risk and revealing heterogeneity in cognition and progression risk within the NACC “normal cognition” group.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3