Accounting for the power of nature: Using flume and field studies to compare the capacities of bio‐energy and fluvial energy to move surficial gravels

Author:

Johnson Matthew F.1ORCID,Albertson Lindsey K.2ORCID,Everall Nicholas C.3,Harvey Gemma L.4,Mason Richard5ORCID,Pledger Andrew6,Rice Stephen P.7ORCID,Thorne Colin R.1

Affiliation:

1. School of Geography University of Nottingham UK

2. Department of Ecology Montana State University Bozeman Montana USA

3. Aquascience Consultancy Limited Darley Dale, Chesterfield UK

4. School of Geography Queen Mary University of London UK

5. Department of Ecology and Environmental Science Umeå University Umeå Sweden

6. Previsico Limited Loughborough UK

7. Department of Natural Sciences Manchester Metropolitan University Manchester UK

Abstract

AbstractRiver channels, riparian and floodplain forms and dynamics are all influenced strongly by biological processes. However, the influence of macroinvertebrates on entrainment and transport of river sediments remains poorly understood. We use an energy‐based approach to explore the capacity of benthic animals to move surficial, gravel‐bed particles in field and laboratory settings and use the results to assess the relative significance of biological and physical benthic processes. Our results showed that in 11 British gravel‐bed rivers, the maximum energy content (i.e., calorific content) of macroinvertebrate communities generally matched the flow energy associated with median discharges and, at multiple sites, exceeded that of the 10‐year return interval flood. A series of laboratory experiments used to estimate the minimum energy expended by signal crayfish (Pacifastacus leniusculus) when performing geomorphic work established that crayfish move gravel particles at energy levels below that expected of the flow, complicating direct comparisons of the capacity for macroinvertebrates and fluvial flows to influence bed mobility. Our findings suggest that the influence of macroinvertebrate communities in either promoting or suppressing, the mobilisation of the bed may be large compared to equivalent values of fluvial energy. Based on these findings, we conclude that in the gravel‐bed rivers studied, the macroinvertebrate community's potential to perform geomorphic work matches or exceeds the stream power during most of the year. Although our study examined biological and fluvial energy systems separately, it is important to recognise that in nature, these systems are highly interactive. It follows that utilising the energy framework presented in this paper could lead to rapid advances in both fluvial biogeomorphology and river management and restoration.

Funder

British Society for Geomorphology

Leverhulme Trust

Environment Agency

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3