An optimal linear and elliptical antenna array design using black widow optimisation for 5G communication

Author:

Saha Rajrup1,Das Avishek2ORCID,Mandal Durbadal1,Kar Rajib1

Affiliation:

1. Department of Electronics and Communication Engineering NIT Durgapur India

2. Department of Electronics and Communication Engineering HIT Haldia India

Abstract

SummaryThis research illustrates a precise linear and elliptical antenna array design for synthesising the optimal far‐field radiation pattern in the fifth‐generation (5G) communication spectrum using a meta‐heuristic optimisation technique known as black widow optimisation (BWO). 5G communication is an emerging technology with revolutionary changes in the wireless communication system with ultra‐high data rate, enhanced capacity, low latency and good quality of service. An accurate antenna array design for an ideal far‐field radiation pattern synthesis with a suppressed side lobe level (SLL) value and half power beam width (HPBW) is the most crucial aspect of 5G communications. A suppressed SLL is necessary to reduce interference in the entire side lobe region, whereas a low HPBW is required for long‐distance communication. Here, the BWO is employed to find the optimal feeding current to each array element to lower the SLL and the HPBW value. The BWO algorithm sustains impeccable equity between the exploration and exploitation stages to impact different potential regions of the search space and generate new solutions to attain the global optima by evading the trap of local optima. The design examples of the linear antenna array (LAA) and elliptical antenna array (EAA) are illustrated in this article by applying the optimal feeding currents to each array element. Compared to the uniform antenna array and methodologies described in the recently published literature, the results obtained utilising the BWO algorithm for designing the LAAs and EAAs demonstrate a substantial development in the reduction of SLL and HPBW.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3