Rapid total sialic acid monitoring during cell culture process using a machine learning model based soft sensor

Author:

Behdani Amir M.1,Zhao Yuxiang2ORCID,Yao Grace2,Wasalathanthri Dhanuka2ORCID,Hodgman Eric2,Borys Michael2,Li Gloria2,Khetan Anurag2ORCID,Wijesinghe Dayanjan1,Leone Anthony2

Affiliation:

1. School of Pharmacy Virginia Commonwealth University Richmond Virginia USA

2. Global Product Development and Supply Bristol‐Myers Squibb Company Devens Massachusetts USA

Abstract

AbstractTotal sialic acid content (TSA) in biotherapeutic proteins is often a critical quality attribute as it impacts the drug efficacy. Traditional wet chemical assays to quantify TSA in biotherapeutic proteins during cell culture typically takes several hours or longer due to the complexity of the assay which involves isolation of sialic acid from the protein of interest, followed by sample preparation and chromatographic based separation for analysis. Here, we developed a machine learning model‐based technology to rapidly predict TSA during cell culture by using typically measured process parameters. The technology features a user interface, where the users only have to upload cell culture process parameters as input variables and TSA values are instantly displayed on a dashboard platform based on the model predictions. In this study, multiple machine learning algorithms were assessed on our dataset, with the Random Forest model being identified as the most promising model. Feature importance analysis from the Random Forest model revealed that attributes like viable cell density (VCD), glutamate, ammonium, phosphate, and basal medium type are critical for predictions. Notably, while the model demonstrated strong predictability by Day 14 of observation, challenges remain in forecasting TSA values at the edges of the calibration range. This research not only emphasizes the transformative power of machine learning and soft sensors in bioprocessing but also introduces a rapid and efficient tool for sialic acid prediction, signaling significant advancements in bioprocessing. Future endeavors may focus on data augmentation to further enhance model precision and exploration of process control capabilities.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3