Dynamic disequilibrium: Recent widespread increases in vegetation cover on subarctic floodplains of Interior Alaska

Author:

Frost Gerald V.1ORCID,Roland Carl A.2ORCID,Schmidt Joshua H.2ORCID

Affiliation:

1. Alaska Biological Research, Inc. Fairbanks Alaska USA

2. National Park Service, Central Alaska Network Fairbanks Alaska USA

Abstract

AbstractBoreal forest and tundra ecosystems are undergoing rapid climatic and environmental changes with consequences for ecosystem structure, function, and services. Although riparian zones occupy a small footprint within subarctic landscapes, they have disproportionately high value as foci of hydrological processes, biogeochemical cycling, ecological disturbance, biodiversity, and wildlife activity. Recent observations of increased winter discharge, reduced peak flows, and increased connectivity between catchments, streams, and groundwater in subarctic riparian zones have prompted predictions of altered riverine disturbance regimes, increased channelization, and a decline in the extent of active floodplains. However, few observational data exist concerning the spatiotemporal dynamics of subarctic floodplain vegetation, which can serve as a bioindicator to corroborate such predictions. We analyzed the distribution and extent of riparian ecotypes across a network of streams in 12 Interior Alaska watersheds using high‐resolution image pairs from circa 1981–2010. All stream reaches encompassed pronounced elevational gradients and included elevational forest–tundra ecotones. We classified riparian ecotypes using an image‐based point‐intercept sampling approach, calculated the probability of ecotype transitions, and evaluated relationships between ecotype transitions and environmental covariates. Our results reveal widespread increases in the stature, density, and extent of riparian vegetation spanning gradients of elevation, floodplain morphology, and climate. Ecotype transitions occurred at >20% of sample points, and there was a strong imbalance toward forward successional transitions (16.5%) versus backward transitions (4.0%). That is, we observed a strong tendency toward increasing cover, stature, and density of vegetation communities across our extensive sampling domain across our approximately 30‐year sample period. This relatively rapid riparian “greening” signal tended to be most pronounced in our glaciated watersheds. Although the streams we studied displayed high local variability in ecotype transitions, our results support hypotheses of increasing channelization and reduced extent of unvegetated surfaces on subarctic floodplains. They also likely reflect a trend toward more rapid and extensive plant recruitment and growth due to processes associated with conspicuous warming in northern ecosystems, consistent with greening documented in other subarctic landscape segments along gradients of elevation and latitude.

Funder

National Park Service

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3