The effect of propylene glycol addition on the flavour compounds retention of peppermint powders

Author:

Chun Cui1ORCID,Mingqi Gao1ORCID,Xuewei Jia2ORCID,Bingjie Ma2ORCID,Tianxiao Li2ORCID,Shu Tian3ORCID,Chunping Xu2ORCID

Affiliation:

1. Technical Center of China Tobacco Henan Industrial Co. Ltd. Zhengzhou 450016 China

2. College of Food and Bioengineering/Zhengzhou University of Light Industry Zhengzhou 450001 China

3. Inner Mongolia Kunming Cigarettes Co., Ltd. Hohhot 010020 China

Abstract

AbstractCompared with peppermint oil, natural peppermint has more ingredients, a layered fragrance, and a green colour. It has been widely used as a nutritional additive, herbal tea, food flavouring or colouring. In this work, the retention of volatile flavour compounds of peppermint powders was enhanced by propylene glycol, a reagent that enhances hydrogen bonds and moisture absorption. The levels of influence of propylene glycol content on the retention of different volatile flavour compounds, moisture absorption and water distribution were evaluated by GC–MS, dynamic water absorption instrument (DVS), and low‐field nuclear magnetic resonance (LF‐NMR), respectively. GC–MS analysis showed that the volatile substances of peppermint powders (PMs) without propylene glycol were reduced to 22 kinds after storage for 90 days, and the total amount of volatile substances remained at 40.94%; PG2 with 2% propylene glycol had the best flavour retention. After 90 days of storage, the residual percentage of volatile flavour compounds of PG2 was approximately 72.56%, which was significantly increased compared with that of PM. The DVS results suggested that all the peppermint powders adopted a type III moisture absorption isotherm, and they all had multilayer adsorbed water. PG2 had the best moisture retention capacity and the highest hygroscopic hysteresis, while PG4 with a high propylene glycol content had a relatively poor moisture retention capacity. Similarly, LF‐NMR analysis showed that PG2 had a higher proportion of bound water and lower relaxation times T21 and T22 under different humidity conditions, indicating that it had the strongest water binding capacity. The correlation analysis showed that there was a significant positive correlation between the residual volatile compounds of peppermint powders and the peak area of bound water A21. The higher the proportion of strongly bound water in peppermint particles was, the more residual volatile substances were identified in peppermint particles. These results show that peppermint particles supplemented with propylene glycol can significantly improve the flavour retention ability of peppermint powders. In short, the results could be applied to the storage stability and quality control of peppermint products.

Publisher

Wiley

Subject

General Chemistry,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3