Nano‐engineering in zinc‐based catalysts for CO2 electroreduction: Advances and challenges

Author:

Wang Junjie1,Zhu Zhaozhao1,Lin Yingxi1,Li Zhao2,Tang Wu1,Wang John3,Chen Jun Song12,Wu Rui1

Affiliation:

1. School of Materials and Energy University of Electronic Science and Technology of China Chengdu China

2. Interdisciplinary Materials Research Center, Institute for Advanced Study Chengdu University Chengdu China

3. Department of Materials Science and Engineering National University of Singapore Singapore

Abstract

AbstractElectrocatalytic CO2 reduction (CO2RR), an emerging sustainable energy technology to convert atmospheric CO2 into value‐added chemicals, has received extensive attention. However, the high thermodynamic stability of CO2 and the competitive hydrogen evolution reaction lead to poor catalytic performances, hardly meeting industrial application demands. Due to abundant reserves and favorable CO selectivity, zinc (Zn)‐based catalysts have been considered one of the most prospective catalysts for CO2‐to‐CO conversion. A series of advanced zinc‐based electrocatalysts, including Zn nanosheets, Zn single atoms, defective ZnO, and metallic Zn alloys, have been widely reported for CO2RR. Despite significant progress, a comprehensive and fundamental summary is still lacking. Herein, this review provides a thorough discussion of effective modulation strategies such as morphology design, doping, defect, heterointerface, alloying, facet, and single‐atom, emphasizing how these methods can influence the electronic structure and adsorption properties of intermediates, as well as the catalytic activity of Zn‐based materials. Moreover, the challenges and opportunities of Zn‐based catalysts for CO2RR are also discussed. This review is expected to promote the broader application of efficient Zn‐based catalysts in electrocatalytic CO2RR, thus contributing to a future of sustainable energy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3