Simulation and analysis of edge ghosting for microcapsule e‐paper based on particle dynamics and light scattering model

Author:

Zeng Zheng1ORCID,Liu Yunhe1,Liu Guangyou1,Yang Jinlan1,Yang Mingyang1,Zou Guowei1,Qin Zong1,Wang Xidu2,Deng Shaozhi1,Yang Bo‐Ru1ORCID

Affiliation:

1. State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology Sun Yat‐sen University Guangzhou China

2. School of Electronics and Information Engineering South China University of Technology Guangzhou China

Abstract

AbstractElectronic paper (e‐paper) is a reflective display technology with unique advantages, such as bistability, low‐power consumption, and high ambient contrast ratio. These features make e‐paper a promising candidate for future Internet of Things applications. Among different technologies of e‐paper, electrophoretic display (EPD) is the most successful one for commercialization. However, the edge ghosting (also known as the fringing effect) still limits the performance of EPD. Herein, we established a model of particle dynamics of electrophoresis, simulated the edge ghosting of microcapsule EPD, analyzed the edge ghosting effect, and revealed the relationship between thicknesses, dielectric constants of the back binder layer, and the edge ghosting. Two EPD panels with different thicknesses of back binder layer were demonstrated, which verifies the accuracy of this simulation model. With the proposed model, many device mechanisms and product issues can be analyzed and illustrated, which is supposed to guide the researchers in optimizing the device structure design of EPD.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3