Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests

Author:

Tortorelli Claire M.1ORCID,Latimer Andrew M.1ORCID,Young Derek J. N.1ORCID

Affiliation:

1. Department of Plant Sciences University of California Davis California USA

Abstract

AbstractRising global fire activity is increasing the prevalence of repeated short‐interval burning (reburning) in forests worldwide. In forests that historically experienced frequent‐fire regimes, high‐severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low‐ to moderate‐severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire‐prone forest ecosystem trajectories over the next century. Further, knowing where and when a wildfire may act as a landscape‐scale fuel treatment can help direct pre‐ and post‐fire management efforts. We leverage satellite imagery and fire progression mapping to model reburn dynamics within forests that initially burned at low/moderate severity in 726 unique fire pair events over a 36‐year period across four large fire‐prone Western US ecoregions. We ask (1) how strong are the moderating effects of low‐ to moderate‐severity fire on future fire severity, (2) how long do moderating effects last, and (3) how does the time between fires (a proxy for fuel accumulation) interact with initial fire severity, day‐of‐burning weather conditions, and climate to influence reburn severity. Short‐interval reburns primarily occurred in dry‐ and moist‐mixed conifer forests with historically frequent‐fire regimes. Previous fire moderated reburn severity in all ecoregions with the strongest effects occurring in the California Coast and Western Mountains and the average duration of moderating effects ranging from 13 years in the Western Mountains to >36 years in the California Coast. The strength and duration of moderating effects depended on climate and initial fire severity in some regions, reflecting differences in post‐fire fuel accumulation. In the California Coast, moderating effects lasted longer in cooler and wetter forests. In the Western Mountains, moderating effects were stronger and longer lasting in forests that initially burned at higher severity. Moderating effects were largely robust to fire weather, suggesting that previous fire can mediate future fire severity even under extreme conditions. Our findings demonstrate that low‐ to moderate‐severity fire buffers future fire severity in historically frequent‐fire forests, underlining the importance of wildfire as a restoration tool for adapting to global change.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3