Di(2‐ethylhexyl) phthalate and microplastics cause necroptosis and apoptosis in hepatocytes of mice by inducing oxidative stress

Author:

Chen Lu1,Qi Meng1,Zhang Linlin1,Yu Fuchang1,Tao Dayong1,Xu Chunyan1,Xu Shiwen12ORCID

Affiliation:

1. College of Animal Science and Technology Tarim University Alar Xinjiang Uygur Autonomous Region PR China

2. Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps Alar Xinjiang Uygur Autonomous Region PR China

Abstract

AbstractDi(2‐ethylhexyl) phthalate (DEHP) is a plasticizer and an endocrine disruptor. Microplastics (MPs) are pathogenic small plastic particles and abundant in the aqueous environment. The problem of residual hazards of plastic products is worthy of study, especially the joint exposure of a variety of plastic‐related products to the toxic effect. We used 200 mg/kg DEHP and 10 mg/L MPs to establish exposure model in vivo and 2 mM DEHP and 200 μg/L MPs to establish AML12 cell exposure model in vitro. In vivo study results showed that compared with the control group (NC) group, DEHP and MPs significantly increased the contents of malondialdehyde and hydrogen peroxide, and significantly decreased the contents of glutathione and the activity of superoxide dismutase, total antioxidant capacity, catalase and glutathione peroxidase. The level of oxidative stress was further aggravated after combined exposure. The reactive oxygen species level of AML12 exposed to DEHP and MPs in vitro was significantly higher than NC group, and the combined exposure was significantly higher than the single exposure. The in vivo and in vitro also confirmed that DEHP and MPs could significantly increase the mRNA and protein levels of apoptosis markers and necroptosis markers and there was an additive effect. After N‐acetylcysteine treatment in vitro, the above‐mentioned oxidative stress level and cell damage decreased significantly. This study provided a reference for advocating the reduction of the mixed use of plastic products, and provided a basis for preventing the harm of plastic products residues.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3