Permafrost thaw and thermokarst in the source region of the Yangtze river in the central Tibetan plateau revealed by radar and optical remote sensing

Author:

Wang Lingxiao1ORCID,Huang Chenqi1,Zhao Lin12,Zhou Huayun2,Liu Shibo1,Tang Yunqi1,Li Zhibin1,Xiao Yao2,Zou Defu2,Liu Guangyue2,Du Erji2,Hu Guojie2,Wang Chong1

Affiliation:

1. School of Geographical Sciences Nanjing University of Information Science & Technology (NUIST) Nanjing China

2. Cryosphere Research Station on Qinghai‐Xizang Plateau, State Key Laboratory of Cryosphere Science Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences (CAS) Lanzhou China

Abstract

AbstractThe landscape and landforms in permafrost regions are transforming due to climate change and permafrost thaw. This study uses optical and radar remote sensing, alongside spatial analysis, to examine thermokarst features and their driving factors in the source region of the Yangtze River (SRYR) on the central Tibetan Plateau. We analyse the distribution, interaction, and key environmental factors influencing thermokarst ponds and ground surface deformation, which are the two widespread and noticeable thermokarst features. Since the 1960s, the number of small water bodies has doubled from approximately ~2 × 104 to ~4 × 104 by the 2020s, with the median size of these water bodies decreasing from 2.3 × 104 m2 to 1.4 × 104 m2. The permafrost terrain has an average subsidence rate of 6.8 mm/a. About 50.9% of the SRYR exhibits evident thermokarst features. Surficial geological factors, especially geomorphology and slope, are primary factors in shaping the spatial distributions of thermokarst features. Both seasonal deformation and long‐term subsidence rates are more pronounced in areas with thermokarst ponds. However, once pond coverage exceeds around 5%, the amplifying effect on long‐term subsidence rates and seasonal deformation diminishes. The investigation further reveals that the relationship between seasonal deformation and long‐term subsidence is not strictly linear and that the combined increase in seasonal deformation and long‐term subsidence applies only to areas with seasonal deformation below approximately 20 mm. Beyond this threshold, the long‐term subsidence rate is no longer exacerbated by increased seasonal deformation.

Funder

Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3