Affiliation:
1. ALPINFRA Consulting + Engineering GmbH Hydropower and Geotechnical Engineering Marktplatz 5 5163 Mattsee Austria
Abstract
AbstractFor recent hydroelectric pumped storage projects, the construction of embankment dam structures on alluvial deposits consisting of exceptionally soft soil and in areas with high seismicity was required. This contribution shares experiences and challenges from the static and seismic design of embankment dam structures and ground treatment options. Finite element‐based static and seismic analyses using the Hardening Soil Small Strain model (HSS) showed that preconsolidation has clear benefits compared to stone columns for ground improvement purposes. Regardless of general advantages of surface sealing systems for frequent and rapid impoundment level changes, it was found that clay core design options perform very well under seismic loading conditions and even better than surface‐sealed structures. Seismic ground and structure response analyses involving soft soil considering shear strain‐dependent stiffness degradation revealed that deamplification is expected in contrast to the rule‐of‐thumb amplification approaches enshrined in many seismic design guidelines and codes. It was found that this effect increases with seismic magnitudes and that saturation of peak ground acceleration (PGA) takes place. This results in relatively moderate structure excitations even under significant dynamic excitation.
Reference10 articles.
1. Scheikl M.; Tschuchnigg F.; Marte R.; Schneider-Muntau B. (2023)Advancements within static and dynamic Finite Element Analyses of large Embankment Dams. Proceedings of the 91st ICOLD Annual Meeting Gothenburg Schweden: ICOLD – Paris.
2. Benz T. (2007)Small-Strain Stiffness of Soils and its Numerical Consequences[Ph.D. Thesis]. Stuttgart: Universität Stuttgart.
3. ICOLD (2010)Bulletin 72 – Guidelines for the selecting seismic parameters for large dams: ICOLD – Paris 2010.
4. Van Houtte C. et al. (2017)The New Zealand Strong Motion Database. Bulletin of the New Zealand Society for Earthquake Engineering 50. pp. 1-20: New Zealand Society for Earthquake Engineering – Wellington.
5. Scheikl M. (2022)Dynamic finite element analyses of the earthquake response of large embankment dams[Master Thesis]. Graz: Graz University of Technology.