Landslide susceptibility prediction using machine learning and remote sensing: Case study in Thua Thien Hue province, Vietnam

Author:

Nguyen Huu Duy1ORCID,Nguyen Quoc Huy1ORCID,Du Quan Vu Viet1,Pham Viet Thanh1,Pham Le Tuan1,Van Hoang Thanh2,Truong Quang‐Hai3,Bui Quang‐Thanh1ORCID,Petrisor Alexandru‐Ionut4567ORCID

Affiliation:

1. Faculty of Geography University of Science, Vietnam National University Hanoi Vietnam

2. Geographic Information Systems Research Center Feng Chia University Taichung Taiwan

3. Institute of Vietnamese Studies & Development Sciences Vietnam National University (VNU) Hanoi Vietnam

4. Doctoral School of Urban Planning Ion Mincu University of Architecture and Urbanism Bucharest Romania

5. Faculty of Urbanism and Architecture, Department of Architecture Technical University of Moldova Chisinau Moldova

6. National Institute for Research and Development in Constructions Urbanism and Sustainable Spatial Development URBAN‐INCERC Bucharest Romania

7. National Institute for Research and Development in Tourism Bucharest Romania

Abstract

Landslides lead to widespread devastation and significant loss of life in mountainous regions around the world. Susceptibility assessments can provide critical data to help decision‐makers, for example, local authorities and other organizations, mitigating the landslide risk, although the accuracy of existing studies needs to be improved. This study aims to assess landslide susceptibility in the Thua Thien Hue province of Vietnam using deep neural networks (DNNs) and swarm‐based optimization algorithms, namely Adam, stochastic gradient descent (SGD), Artificial Rabbits Optimization (ARO), Tuna Swarm Optimization (TSO), Sand Cat Swarm Optimization (SCSO), Honey Badger Algorithm (HBA), Marine Predators Algorithm (MPA) and Particle Swarm Optimization (PSO). The locations of 945 landslides occurring between 2012 and 2022, along with 14 conditioning factors, were used as input data to build the DNN and DNN‐hybrid models. The performance of the proposed models was evaluated using the statistical indices receiver operating characteristic curve, area under the curve (AUC), root mean square error, mean absolute error (MAE), R2 and accuracy. All proposed models had a high accuracy of prediction. The DNN‐MPA model had the highest AUC value (0.95), followed by DNN‐HBA (0.95), DNN‐ARO (0.95), DNN‐Adam (0.95), DNN‐SGD (0.95), DNN‐TSO (0.93), DNN‐PSO (0.9) and finally DNN‐SCSO (0.83). High‐precision models have identified that the majority of the western region of Thua Thien Hue province is very highly susceptible to landslides. Models like the aforementioned ones can support decision‐makers in updating large‐scale sustainable land‐use strategies.

Publisher

Wiley

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3