Rational design of graphene biohydrogel as a modular platform for highly efficient starch‐to‐bioelectricity

Author:

Du Jia‐Xin1,Liang Bo2,Zhao Xing‐Ming1,Sha Chong1,Liu Aihua3,Yong Yang‐Chun1ORCID

Affiliation:

1. Institute for Energy Research and Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University Zhenjiang China

2. Shandong Key Lab of Applied Mycology College of Life Sciences, Qingdao Agricultural University Qingdao China

3. Institute for Biosensing, College of Life Sciences, Qingdao University Qingdao China

Abstract

AbstractChemical‐to‐bioelectricity by using different biocatalysts was considered as a next‐generation green power source. However, bioelectricity production using macromolecular substrate usually encountered low Coulombic efficiency (CE) and power density due to inefficient electron releasing and sluggish electron collection. Here, a rationally engineered biocascade (including depolymerization module, fermentation module, and electro‐respiration module) embedded in highly conductive 3D graphene hydrogel (electron collection module) was designed and fabricated as a modular platform to simultaneously improve the substrate degradation, enhance the electron releasing and reinforce the electron collection. As a result, this modular platform enabled a ~15‐fold improvement on power density and reached the highest CE (46.3%) and power density (780 mW/m2) ever reported for bioelectricity production from starch (a model macromolecular substrate). This work demonstrated a promising approach for rationally harvesting bioelectricity with complicated substrates, which would open up a new avenue for practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3