Affiliation:
1. College of Materials and Environmental Engineering Chizhou University Chizhou Anhui China
2. School of Chemistry and Materials Nanjing University of Information Science and Technology Nanjing Jiangsu China
3. School of Materials Science and Engineering Donghua University Shanghai China
4. Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai China
Abstract
AbstractThe construction of flexible circuits is a crucial and challenging aspect in the design and fabrication of fabric‐based flexible electronics, which hold significant potential for various applications. In this study, we successfully developed high‐precision and durable fabric‐based flexible circuits by ingeniously combining ultraviolet light (UV)‐curing technology with chemical plating. Specifically, a UV coating containing Ag/Fe3O4 catalysts was applied onto polyester fabric surface, followed by printing the designed circuit structure diagram onto the fabric using UV light‐directed curing of the coating, and fabric‐based flexible circuits were then fabricated through chemical plating process. The fabric‐based flexible circuits exhibit only minimal increases in resistance following durability testing, including bending (8000 times), abrasion (2000 times), high and low temperature stability (−30 to 60°C), and high temperature/humidity stability (65°C, RH = 95%, 48 h), which remains consistently stable. This developed technology holds immense potential across various applications for smart wearable devices.
Funder
National Natural Science Foundation of China