Affiliation:
1. School of Materials and Environmental Engineering Changsha University Changsha China
2. College of Energy Materials and Chemistry Inner Mongonia University Hohhot Inner Mongolia China
3. Liling Ceramic Institute Hunan University of Technology Zhuzhou Hunan China
Abstract
AbstractAqueous zinc‐ion batteries have been regarded as the most potential candidate to substitute lithium‐ion batteries. However, many serious challenges such as suppressing zinc dendrite growth and undesirable reactions, and achieving fully accepted mechanism also have not been solved. Herein, the commensal composite microspheres with α‐MnO2 nano‐wires and carbon nanotubes were achieved and could effectively suppress ZnSO4·3Zn(OH)2·nH2O rampant crystallization. The electrode assembled with the microspheres delivered a high initial capacity at a current density of 0.05 A g−1 and maintained a significantly prominent capacity retention of 88% over 2500 cycles. Furthermore, a novel energy‐storage mechanism, in which multivalent manganese oxides play a synergistic effect, was comprehensively investigated by the quantitative and qualitative analysis for ZnSO4·3Zn(OH)2·nH2O. The capacity contribution of multivalent manganese oxides and the crystal structure dissection in the transformed processes were completely identified. Therefore, our research could provide a novel strategy for designing improved electrode structure and a comprehensive understanding of the energy storage mechanism of α‐MnO2 cathodes.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献