Bias‐reduced neural networks for parameter estimation in quantitative MRI

Author:

Mao Andrew123ORCID,Flassbeck Sebastian12ORCID,Assländer Jakob12ORCID

Affiliation:

1. Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology New York University Grossman School of Medicine New York New York USA

2. Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA

3. Vilcek Institute of Graduate Biomedical Sciences New York University Grossman School of Medicine New York New York USA

Abstract

AbstractPurposeTo develop neural network (NN)‐based quantitative MRI parameter estimators with minimal bias and a variance close to the Cramér–Rao bound.Theory and MethodsWe generalize the mean squared error loss to control the bias and variance of the NN's estimates, which involves averaging over multiple noise realizations of the same measurements during training. Bias and variance properties of the resulting NNs are studied for two neuroimaging applications.ResultsIn simulations, the proposed strategy reduces the estimates' bias throughout parameter space and achieves a variance close to the Cramér–Rao bound. In vivo, we observe good concordance between parameter maps estimated with the proposed NNs and traditional estimators, such as nonlinear least‐squares fitting, while state‐of‐the‐art NNs show larger deviations.ConclusionThe proposed NNs have greatly reduced bias compared to those trained using the mean squared error and offer significantly improved computational efficiency over traditional estimators with comparable or better accuracy.

Funder

National Institute of Neurological Disorders and Stroke

National Institute of Biomedical Imaging and Bioengineering

National Institute on Aging

National Institute of General Medical Sciences

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3