Ginkgo biloba active compounds can modulate the development of acute mountain sickness and ischemic stroke as discovered by network pharmacology and molecular docking

Author:

Guo Haoran12,Kang Xueran3,Xu Ying24,Wang Chengbin1,Wang Chi1ORCID

Affiliation:

1. Department of Laboratory Medicine The First Medical Center of Chinese PLA General Hospital Beijing China

2. Medical School of Chinese PLA Beijing China

3. Shanghai Jiao Tong University Shanghai China

4. School of Laboratory Medicine Weifang Medical College Weifang Shandong China

Abstract

AbstractBackgroundA combination of molecular docking, molecular dynamics simulations, and herbal network pharmacology was used to investigate the shared key targets and potential mechanisms underlying the preventive effects of Ginkgo biloba active compounds against acute mountain sickness (AMS) and ischemic stroke (IS).Material and MethodsThe Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to screen the main active compounds of Ginkgo biloba and their corresponding targets. We obtained AMS‐related genes by mining several databases and cross‐correlated them with key active compounds of Ginkgo biloba to identify relevant action targets for treating AMS. The STRING database was used to construct a protein–protein interaction network of the effect of Ginkgo biloba active compounds on AMS targets. The expression of genes in the network was analyzed in an IS dataset to identify common key targets of Ginkgo biloba active compounds for both AMS and IS prevention.ResultsThe intersection between the targets of Ginkgo biloba active compounds and AMS‐related genes identified 43 overlapping genes. Analysis of the protein–protein interaction network showed that VEGFA, TP53, SERPINE1, and PTGS2 were among the key hub genes. Analysis of the IS dataset identified significant differences in the expression levels of CAT, TP53, CXCL8, NFKBIA, and PTGS2. These genes were used to construct a visual nomogram prediction model for IS prognosis with promising clinical implications. Molecular docking and molecular dynamics simulations indicated that sesamin stably targeted and bound to PTGS2.ConclusionsActive ingredients of Ginkgo biloba, including luteolin, quercetin, and sesamin, have the potential to modulate the development of AMS and IS through targeted interactions with key proteins, including TP53, CXCL8, NFKBIA, PTGS2, and CAT.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3