Deep neural network‐based infinitesimal dipole modeling using either near or far electric‐field

Author:

Park Jae‐Yoon1,Kim Yong‐Hwa2,Cho Chihyun3,Choo Jaeyul1ORCID

Affiliation:

1. Department of Electronics Engineering Andong National University Andong Gyeongsangbuk Korea

2. Department of Data Science Korea National University of Transportation Uiwang‐si Gyeonggi‐do Korea

3. Electromagnetic Wave Metrology Group Korea Research Institute of Standards and Science Daejeon Korea

Abstract

AbstractThis paper presents the deep neural network‐based infinitesimal dipole model using either near‐ or far‐field radiation patterns. Based on the radiating characteristic of an infinitesimal dipole, we generated a data set including near and far field radiation patterns corresponding to the phases of infinitesimal dipoles. We used the data set to train and validate the deep neural network (DNN) model. After checking the statistic of the fit function and the average error in expecting the phases of the infinite dipoles, we conclude that the proposed infinitesimal dipole modeling using DNN is sufficient to predict the characteristics of electromagnetic radiation.

Funder

Korea Research Institute of Standards and Science

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3