Predicting lymph node recurrence in cT12N0 tongue squamous cell carcinoma: collaboration between artificial intelligence and pathologists

Author:

Adachi Masahiro12ORCID,Taki Tetsuro1,Kojima Motohiro13,Sakamoto Naoya13,Matsuura Kazuto4,Hayashi Ryuichi4,Tabuchi Keiji2,Ishikawa Shumpei35,Ishii Genichiro16,Sakashita Shingo13

Affiliation:

1. Department of Pathology and Clinical Laboratories National Cancer Center Hospital East Kashiwa Japan

2. Department of Otolaryngology, Head and Neck Surgery University of Tsukuba Tsukuba Japan

3. Division of Pathology National Cancer Center Exploratory Oncology Research & Clinical Trial Center Kashiwa Japan

4. Department of Head and Neck Surgery National Cancer Center Hospital East Kashiwa Japan

5. Department of Preventive Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan

6. Division of Innovative Pathology and Laboratory Medicine National Cancer Center Exploratory Oncology Research & Clinical Trial Center Kashiwa Japan

Abstract

AbstractResearchers have attempted to identify the factors involved in lymph node recurrence in cT1‐2N0 tongue squamous cell carcinoma (SCC). However, studies combining histopathological and clinicopathological information in prediction models are limited. We aimed to develop a highly accurate lymph node recurrence prediction model for clinical stage T1‐2, N0 (cT1‐2N0) tongue SCC by integrating histopathological artificial intelligence (AI) with clinicopathological information. A dataset from 148 patients with cT1‐2N0 tongue SCC was divided into training and test sets. The prediction models were constructed using AI‐extracted information from whole slide images (WSIs), human‐assessed clinicopathological information, and both combined. Weakly supervised learning and machine learning algorithms were used for WSIs and clinicopathological information, respectively. The combination model utilised both algorithms. Highly predictive patches from the model were analysed for histopathological features. In the test set, the areas under the receiver operating characteristic (ROC) curve for the model using WSI, clinicopathological information, and both combined were 0.826, 0.835, and 0.991, respectively. The highest area under the ROC curve was achieved with the model combining WSI and clinicopathological factors. Histopathological feature analysis showed that highly predicted patches extracted from recurrence cases exhibited significantly more tumour cells, inflammatory cells, and muscle content compared with non‐recurrence cases. Moreover, patches with mixed inflammatory cells, tumour cells, and muscle were significantly more prevalent in recurrence versus non‐recurrence cases. The model integrating AI‐extracted histopathological and human‐assessed clinicopathological information demonstrated high accuracy in predicting lymph node recurrence in patients with cT1‐2N0 tongue SCC.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3