Development and external validation of MRI‐based RAS mutation status prediction model for liver metastases of colorectal cancer

Author:

Han Zhe1,Tong Yahan1,Zhu Xiu2,Sun Diandian3,Jia Ningyang4,Feng Yayuan4,Yan Kai5,Wei Yongpeng6,He Jie7,Ju HaiXing8

Affiliation:

1. Department of Radiology, Zhejiang Cancer Hospital Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang China

2. Department of Pathology, Zhejiang Cancer Hospital Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang China

3. Department of Anorectal Surgery Shaoxing Second Hospital Shaoxing Zhejiang China

4. Department of Radiology Third Affiliated Hospital of Naval Medical University Shanghai China

5. Department of Thoracic Surgery Second Affiliated Hospital of Naval Medical University Shanghai China

6. Department of Hepatic Surgery Third Affiliated Hospital of Naval Medical University Shanghai China

7. Department of Radiology, Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou Zhejiang China

8. Department of Colorectal Surgery, Zhejiang Cancer Hospital Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang China

Abstract

AbstractBackgroundThe mutation status of rat sarcoma viral oncogene homolog (RAS) has prognostic significance and serves as a key predictive biomarker for the effectiveness of antiepidermal growth factor receptor (EGFR) therapy. However, there remains a lack of effective models for predicting RAS mutation status in colorectal liver metastases (CRLMs). This study aimed to construct and validate a diagnostic model for predicting RAS mutation status among patients undergoing hepatic resection for CRLMs.MethodsA diagnostic multivariate prediction model was developed and validated in patients with CRLMs who had undergone hepatectomy between 2014 and 2020. Patients from Institution A were assigned to the model development group (i.e., Development Cohort), while patients from Institutions B and C were assigned to the external validation groups (i.e., Validation Cohort_1 and Validation Cohort_2). The presence of CRLMs was determined by examination of surgical specimens. RAS mutation status was determined by genetic testing. The final predictors, identified by a group of oncologists and radiologists, included several key clinical, demographic, and radiographic characteristics derived from magnetic resonance images. Multiple imputation was performed to estimate the values of missing non‐outcome data. A penalized logistic regression model using the adaptive least absolute shrinkage and selection operator penalty was implemented to select appropriate variables for the development of the model. A single nomogram was constructed from the model. The performance of the prediction model, discrimination, and calibration were estimated and reported by the area under the receiver operating characteristic curve (AUC) and calibration plots. Internal validation with a bootstrapping procedure and external validation of the nomogram were assessed. Finally, decision curve analyses were used to characterize the clinical outcomes of the Development and Validation Cohorts.ResultsA total of 173 patients were enrolled in this study between January 2014 and May 2020. Of the 173 patients, 117 patients from Institution A were assigned to the Model Development group, while 56 patients (33 from Institution B and 23 from Institution C) were assigned to the Model Validation groups. Forty‐six (39.3%) patients harbored RAS mutations in the Development Cohort compared to 14 (42.4%) in Validation Cohort_1 and 8 (34.8%) in Validation Cohort_2. The final model contained the following predictor variables: time of occurrence of CRLMs, location of primary lesion, type of intratumoral necrosis, and early enhancement of liver parenchyma. The diagnostic model based on clinical and MRI data demonstrated satisfactory predictive performance in distinguishing between mutated and wild‐type RAS, with AUCs of 0.742 (95% confidence interval [CI]: 0.651─0.834), 0.741 (95% CI: 0.649─0.836), 0.703 (95% CI: 0.514─0.892), and 0.708 (95% CI: 0.452─0.964) in the Development Cohort, bootstrapping internal validation, external Validation Cohort_1 and Validation Cohort_2, respectively. The Hosmer‐Lemeshow goodness‐of‐fit values for the Development Cohort, Validation Cohort_1 and Validation Cohort_2 were 2.868 (p = 0.942), 4.616 (p = 0.465), and 6.297 (p = 0.391), respectively.ConclusionsIntegrating clinical, demographic, and radiographic modalities with a magnetic resonance imaging‐based approach may accurately predict the RAS mutation status of CRLMs, thereby aiding in triage and possibly reducing the time taken to perform diagnostic and life‐saving procedures. Our diagnostic multivariate prediction model may serve as a foundation for prognostic stratification and therapeutic decision‐making.

Publisher

Wiley

Subject

Oncology,General Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3