Electrochemical mechanisms of leakage‐current in photovoltaic modules

Author:

Kempe Michael1ORCID,Hacke Peter1ORCID,Morse Joshua1,Li Jichao2ORCID,Shen Yu‐Chen2,Han Katherine2

Affiliation:

1. National Renewable Energy Laboratory Golden CO 80401 USA

2. SunPower Corporation San Jose CA 95134 USA

Abstract

AbstractThis paper analyzes the mechanisms and pathways for leakage current flow observed in Si photovoltaic modules subjected to high temperature and humidity and a large voltage bias with respect to ground. The current inside of the frame is in the form of electron motion, but in the glass and polymer, it is in at least a large part attributable to the movement of ions. When the mode of current flow changes from electronic to ionic conduction, electrochemical reactions will take place at the interface. This can include reactions that produce volatile chemical species like H2, COx, and O2, along with ionic species such as OH and H3O+. Here, we see evidence of the importance of different charge carriers with different diffusion rates and the influence of electrochemical processes involved. The application of negative voltage to the cell circuit affects the resistivity of glass producing surfaces with poor conductivity but with some increases in the electrochemical potential producing complicated interactions that are important when the voltage is changed. In the polymer, there is the development of a space charge region and a chemical gradient providing two oppositional forces to current flow, which when released create a complicated discharge process. Here, we give a basic understanding of the charge/discharge of PV cells highlighting how the specific mechanisms are important in understanding some of the degradation processes in PV modules. We find that there is evidence of multiple significant charge carrier species with different diffusion time scales. The glass/polymer interface forms a depleted region of higher resistance after prolonged exposure to current. Charge also builds up at the polymer to cell antireflective coating interface and mostly flows to the gridlines to experience electrochemical reactions. These complexities result in non‐linear behavior where the apparent resistivities of the different layers change during charge/discharging processes, making the modeling of the current flow extremely difficult.

Funder

U.S. Department of Energy

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3