Chemical Epitaxy of Iridium Oxide on Tin Oxide Enhances Stability of Supported OER Catalyst

Author:

Kost Melisande1ORCID,Kornherr Matthias2ORCID,Zehetmaier Peter1,Illner Hannah1ORCID,Jeon Djung Sue2ORCID,Gasteiger Hubert2ORCID,Döblinger Markus1ORCID,Fattakhova‐Rohlfing Dina34ORCID,Bein Thomas1ORCID

Affiliation:

1. Department of Chemistry and Center for NanoScience (CeNS) Ludwig‐Maximilians‐Universität München Butenandtstrasse 5‐13 (E) 81377 Munich Germany

2. Department of Chemistry Catalysis Research Center and Chair of Technical Electrochemistry Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany

3. Institute of Energy Materials and Devices (IMD‐2): Materials Synthesis and Processing Forschungszentrum Jülich GmbH Wilhelm‐Johnen‐Strasse 52425 Jülich Germany

4. Faculty of Engineering and Center for Nanointegration Duisburg‐Essen (CENIDE) Universität Duisburg‐Essen Lotharstraße 1 47057 Duisburg Germany

Abstract

AbstractSignificantly reducing the iridium content in oxygen evolution reaction (OER) catalysts while maintaining high electrocatalytic activity and stability is a key priority in the development of large‐scale proton exchange membrane (PEM) electrolyzers. In practical catalysts, this is usually achieved by depositing thin layers of iridium oxide on a dimensionally stable metal oxide support material that reduces the volumetric packing density of iridium in the electrode assembly. By comparing two support materials with different structure types, it is shown that the chemical nature of the metal oxide support can have a strong influence on the crystallization of the iridium oxide phase and the direction of crystal growth. Epitaxial growth of crystalline IrO2 is achieved on the isostructural support material SnO2, both of which have a rutile structure with very similar lattice constants. Crystallization of amorphous IrOx on an SnO2 substrate results in interconnected, ultrasmall IrO2 crystallites that grow along the surface and are firmly anchored to the substrate. Thereby, the IrO2 phase enables excellent conductivity and remarkable stability of the catalyst at higher overpotentials and current densities at a very low Ir content of only 14 at%. The chemical epitaxy described here opens new horizons for the optimization of conductivity, activity and stability of electrocatalysts and the development of other epitaxial materials systems.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3