Affiliation:
1. Key Laboratory of CNC Equipment Reliability Ministry of Education School of Mechanical and Aerospace Engineering Jilin University Changchun Jilin 130022 China
2. Department of Mechanical Engineering Faculty of Science and Technology Keio University Yokohama 223–8522 Japan
Abstract
AbstractFlexible and controllable fabrication of micro–nano structures on metallic glasses (MGs) endow them with more functional applications, but it is still challenging due to the unique mechanical, physical, and chemical properties of MGs. In this study, inspired by a new physical phenomenon observed in the nanosecond laser–MG interaction (i.e., the surface structure is transformed from the normally observed microgroove into the micro–nano bulge at a critical peak laser power intensity), a nanosecond laser “pulling” method is proposed to pattern the MG surface. The formation mechanism and evolution of the micro–nano bulge are investigated in detail, and accordingly, various micro–nano structures including the unidirectional stripe, pillar, cross‐hatch patterns, “JLU”, circle, triangle, and square, are derived and created on the MG surface, which affects the surface optical diffraction. Overall, this study provides a highly flexible and controllable method to fabricate micro–nano structures on MGs.
Funder
Natural Science Foundation of Jilin Province
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献