Tailored (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7 as a Highly Active and Stable Nanocatalyst for the Oxygen Evolution Reaction

Author:

Paladugu Sreya1ORCID,Abdullahi Ibrahim Munkaila2ORCID,Jothi Palani Raja3ORCID,Jiang Bo1ORCID,Nath Manashi2ORCID,Page Katharine1ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Tennessee Knoxville TN 37996 USA

2. Department of Chemistry Missouri University of Science and Technology Rolla MO 65409 USA

3. JTEC Energy Inc Atlanta GA 30310 USA

Abstract

AbstractDesigning highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self‐assembly (EISA) can be used to synthesize highly porous and high surface area cerate‐based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 + cation substitution for Ce in the CeO2 fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 + x phase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally‐complex fluorite– (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7 is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm−2 in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3