Black Ultra‐Thin Crystalline Silicon Wafers Reach the 4n2 Absorption Limit–Application to IBC Solar Cells

Author:

Garín M.12ORCID,Pasanen T. P.3ORCID,López G.1ORCID,Vähänissi V.3ORCID,Chen K.3ORCID,Martín I.1,Savin H.3ORCID

Affiliation:

1. Universitat Politècnica de Catalunya Carrer del Gran Capità Barcelona 08034 Spain

2. Department of Engineering Universitat de Vic—Universitat Central de Catalunya Carrer de la Laura 13 Vic 08500 Spain

3. Department of Electronics and Nanoengineering Aalto University Tietotie 3 Espoo 02150 Finland

Abstract

AbstractCutting costs by progressively decreasing substrate thickness is a common theme in the crystalline silicon photovoltaic  industry for the last decades, since drastically thinner wafers would significantly reduce the substrate‐related costs. In addition to the technological challenges concerning wafering and handling of razor‐thin flexible wafers, a major bottleneck is to maintain high absorption in those thin wafers. For the latter, advanced light‐trapping techniques become of paramount importance. Here we demonstrate that by applying state‐of‐the‐art black‐Si nanotexture produced by DRIE on thin uncommitted wafers, the maximum theoretical absorption (Yablonovitch's 4n2 absorption limit), that is, ideal light trapping, is reached with wafer thicknesses as low as 40, 20, and 10 µm when paired with a back reflector. Due to the achieved promising optical properties the results are implemented into an actual thin interdigitated back contacted solar cell. The proof‐of‐concept cell, encapsulated in glass, achieved a 16.4% efficiency with an JSC = 35 mA cm2, representing a 43% improvement in output power with respect to the reference polished cell. These results demonstrate the vast potential of black silicon nanotexture in future extremely‐thin silicon photovoltaics.

Funder

Ministerio de Ciencia, Innovación y Universidades

Spanish National Plan for Scientific and Technical Research and Innovation

European Regional Development Fund

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Reference36 articles.

1. S.Philipps W.Warmuth “Photovoltaics Report” Fraunhofer ISE February 24 2022.

2. Progress and prospects for ultrathin solar cells

3. Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials

4. F. J.Henley Presented at2010 35th IEEE Photovoltaic Specialists Conf. Honolulu HI USA June2010.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3