Stretching Aligned Hydrogen Bonding Network to Evoke Mechanically Robust and High‐Energy‐Density P(VDF‐HFP) Dielectric Film Capacitors

Author:

Wu Qi1,Liu Xingang1,Liu Yuanbo2,Zhang Chuhong1ORCID,Nie Min1

Affiliation:

1. State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 China

2. PetroChina Refining Chemicals & New Materials Company China

Abstract

AbstractPolymer‐based dielectric film capacitors are essential energy storage components in electronic and power systems due to their ultrahigh power density and ultra‐fast charge storage/release capability. Nonetheless, their relatively low energy density does not fully meet the requirements of power electronics and pulsed power systems. Herein, a scalable composite dielectric film based on a ferroelectric polymer with edge hydroxylated boron nitride nanosheets (BNNS‐OH) is fabricated via the construction of a hydrogen bonding network and stretching orientation strategy. The presence of hydroxyl groups on boron nitride aids in forming a robust hydrogen bonding network within the ferroelectric polymer, leading to a significant increase in Young's modulus and superior dielectric performance. Furthermore, the stretching process aligns the BNNS‐OH and the hydrogen bonding network along the drawing direction via covalent and hydrogen bonding interaction, resulting in a remarkable tensile strength (109 MPa), breakdown strength (688 MV m−1), and energy density (28.2 J cm−3), outperforming mostrepresentative polymer‐based dielectric films. In combining the advantages of a simple preparation process, extraordinary energy storage performance, and low‐cost raw materials, this strategy is viable for large‐scale production of polymer‐based dielectric films with high mechanical and dielectric performance and opens a new path for the development of next‐generation energy storage applications.

Funder

National Natural Science Foundation of China

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3