Precise Atomic Structure Regulation of Single‐Atom Platinum Catalysts toward Highly Efficient Hydrogen Evolution Reaction

Author:

Jin Chunqiao1,Huo Liuxiang1,Tang Jianli1,Li Shubing1,Jiang Kai12,He Qianqian3,Dong Hongliang4,Gong Yongji3,Hu Zhigao15ORCID

Affiliation:

1. Technical Center for Multifunctional Magneto‐Optical Spectroscopy (Shanghai) Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education) Department of Physics School of Physics and Electronic Science East China Normal University Shanghai 200241 China

2. School of Arts and Sciences Shanghai Dianji University Shanghai 200240 China

3. School of Materials Science and Engineering Beihang University Beijing 100191 China

4. Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China

5. Collaborative Innovation Center of Extreme Optics Shanxi University Taiyuan Shanxi 030006 China

Abstract

AbstractNoble metal single‐atom‐catalysts (SACs) have demonstrated significant potential to improve atom utilization efficiency and catalytic activity for hydrogen evolution reaction (HER). However, challenges still remain in rationally modulating active sites and catalytic activities of SACs, which often results in sluggish kinetics and poor stability, especially in neutral/alkaline media. Herein, precise construction of Pt single atoms anchored on edge of 2D layered Ni(OH)2 (Pt‐Ni(OH)2‐E) is achieved utilizing in situ electrodeposition. Compared to the single‐atom Pt catalysts anchored on the basal plane of Ni(OH)2 (Pt‐Ni(OH)2‐BP), the Pt‐Ni(OH)2‐E possesses superior electron affinity and high intrinsic catalytic activity, which favors the strong adsorption and rapid dissociation toward water molecules. As a result, the Pt‐Ni(OH)2‐E catalyst requires low overpotentials of 21 and 34 mV at 10 mA cm−2 in alkaline and neutral conditions, respectively. Specifically, it shows the high mass activity of 23.6 A mg−1 for Pt at the overpotential of 100 mV, outperforming the reported catalysts and commercial Pt/C. This work provides new insights into the rational design of active sites for preparing high‐performance SACs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3