Topological Insulator Bi2Se3‐Assisted Heterostructure for Ultrafast Charging Sodium‐Ion Batteries

Author:

Xie Minggang1,Li Chunguang1,Zhang Siqi1,Zhang Zhe1,Li Yuxin1,Chen Xiao‐Bo2,Shi Zhan1ORCID,Feng Shouhua1

Affiliation:

1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 P. R. China

2. School of Engineering RMIT University Carlton VIC 3053 Australia

Abstract

AbstractThe development of fast charging materials offers a viable solution for large‐scale and sustainable energy storage needs. However, it remains a critical challenge to improve the electrical and ionic conductivity for better performance. Topological insulator (TI), a topological quantum material that has attracted worldwide attention, hosts unusual metallic surface states and consequent high carrier mobility. Nevertheless, its potential in promising high‐rate charging capability has not been fully realized and explored. Herein, a novel Bi2Se3‐ZnSe heterostructure as excellent fast charging material for Na+ storage is reported. Ultrathin Bi2Se3 nanoplates with rich TI metallic surfaces are introduced as an electronic platform inside the material, which greatly reduces the charge transfer resistance and improves the overall electrical conductivity. Meanwhile, the abundant crystalline interfaces between these two selenides promote Na+ migration and provide additional active sites as well. As expected, the composite delivers the excellent high‐rate performance of 360.5 mAh g−1 at 20 A g−1 and maintains its electrochemical stability of 318.4 mAh g−1 after 3000 long cycles, which is the record high for all reported selenide‐based anodes. This work is anticipated to provide alternative strategies for further exploration of topological insulators and advanced heterostructures.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3