Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor

Author:

Patil Amar M.1,Moon Sunil2,Roy Sanjib Baran1,Ha Jisang1,Chodankar Nilesh R.3,Dubal Deepak P4,Jadhav Arti A.5,Guan Guoqing6,Kang Keonwook2,Jun Seong Chan1ORCID

Affiliation:

1. Nano–Electro–Mechanical Device Laboratory School of Mechanical Engineering Yonsei University 120–749 Seoul South Korea

2. School of Mechanical Engineering Yonsei University Seoul 03722 Republic of Korea

3. Mechanical Engineering Department Khalifa University Abu Dhabi 127788 United Arab Emirates

4. Centre for Materials Science School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane 4000 Australia

5. Department of Physics Shivaji University Kolhapur Maharashtra 416004 India

6. Section of Renewable Energy Institute of Regional Innovation Hirosaki University 3 Bunkyo‐cho Hirosaki Aomori 036–8561 Japan

Abstract

AbstractUltra‐high energy density battery‐type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α‐/γ‐MnS@CoxSy core‐shell heterostructure constrained in the sulphur (S), nitrogen (N) co‐doped carbon (C) metal‐organic frameworks (MOFs) derived nanosheets (α‐/γ‐MnS@CoxSy@N, SC) have been developed. The coordination bonding among CoxSy, and α‐/γ‐MnS nanoparticles at the interfaces and the ππ stacking interactions developed across α‐/γ‐MnS@CoxSy and N, SC restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom‐enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core‐shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. . The α‐/γ‐MnS@CoxSy@N, SC electrode exhibits an excellent specific capacity of 277 mA hg−1 and cycling stability over 23 600 cycles. A quasi‐solid‐state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer‐by‐layer deposited multi‐walled carbon nanotube/Ti3C2TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg−1 (1.62 mWh cm−3) at a power of 933 W kg−1 and 92% capacitance retention over 5000 cycles.

Funder

National Research Foundation

National Research Foundation of Korea

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3