Electrolyte Regulation of Bio‐Inspired Zincophilic Additive toward High‐Performance Dendrite‐Free Aqueous Zinc‐Ion Batteries

Author:

Gou Qianzhi1,Luo Haoran1,Zhang Qi1,Deng Jiangbin1,Zhao Ruizheng2,Odunmbaku Omololu1,Wang Lei1,Li Lingjie3,Zheng Yujie1,Li Jun1,Chao Dongliang2,Li Meng1ORCID

Affiliation:

1. MOE Key Laboratory of Low‐grade Energy Utilization Technologies and Systems CQU‐NUS Renewable Energy Materials & Devices Joint Laboratory School of Energy & Power Engineering Chongqing University Chongqing 400044 P. R. China

2. Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials School of Chemistry and Materials Fudan University Shanghai 200433 P. R. China

3. Chemistry and Chemical Engineering Chongqing University Chongqing 400044 P. R. China

Abstract

AbstractAqueous zinc‐ion batteries hold attractive potential for large‐scale energy storage devices owing to their prominent electrochemical performance and high security. Nevertheless, the applications of aqueous electrolytes have generated various challenges, including uncontrolled dendrite growth and parasitic reactions, thereby deteriorating the Zn anode's stability. Herein, inspired by the superior affinity between Zn2+ and amino acid chains in the zinc finger protein, a cost‐effective and green glycine additive is incorporated into aqueous electrolytes to stabilize the Zn anode. As confirmed by experimental characterizations and theoretical calculations, the glycine additives can not only reorganize the solvation sheaths of hydrated Zn2+ via partial substitution of coordinated H2O but also preferentially adsorb onto the Zn anode, thereby significantly restraining dendrite growth and interfacial side reactions. Accordingly, the Zn anode could realize a long lifespan of over 2000 h and enhanced reversibility (98.8%) in the glycine‐containing electrolyte. Furthermore, the assembled Zn||α‐MnO2 full cells with glycine‐modified electrolyte also delivers substantial capacity retention (82.3% after 1000 cycles at 2 A g‐1), showing promising application prospects. This innovative bio‐inspired design concept would inject new vitality into the development of aqueous electrolytes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3