Affiliation:
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources School of New Energy North China Electric Power University Beijing 102206 China
2. Huaneng Clean Energy Research Institute Beijing 100000 China
Abstract
AbstractThe open circuit voltage (VOC) losses at multiple interfaces within perovskite solar cells (PSCs) limit the improvements in power conversion efficiency (PCE). Herein, a tailored strategy is proposed to reduce the energy offset at both hetero‐interfaces within PSCs to decrease the VOC losses. For the interface of perovskite and electron transport layer where exists a mass of defects, it uses the pyromellitic acid to serve as a molecular bridge, which reduces non‐radiative recombination and energy level offset. For the interface of perovskite and hole transport layer, which includes a passivator of PEAI, the detrimental effect (negative shift of work function) of PEAI passivation and optimizing the interface energy level alignment are neutralized by incorporating (2‐(4‐(bis(4‐methoxyphenyl)amino)phenyl)‐1‐cyanovinyl)phosphonic acid. Owing to synergistically reduced hetero‐interface energy offset, the PSCs achieve a PCE of 25.13%, and the VOC is increased from 1.134 to 1.174 V. In addition, the resulting PSCs possess enhanced stability, the unencapsulated PSCs can maintain ≈96% and ≈97% of their initial PCE after 2000 h of aging under ambient conditions and 210 h under operation conditions.
Funder
Young Elite Scientists Sponsorship Program by Tianjin
Fundamental Research Funds for the Central Universities
Beijing Nova Program
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality