Affiliation:
1. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
2. Division of Environment and Sustainability The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
3. HKUST Shenzhen‐Hong Kong Collaborative Innovation Research Institute Shenzhen Guangdong 518040 China
Abstract
AbstractA soft microbot assembled from individual magnetic microsphere scaffold (MMS) beads carrying mesenchymal stem cells (MSC) is navigated under magnetic actuation, where an oscillating field induces mechanical flexion to propel the microbot toward the target site. A seven‐bead microbot attained a top translational speed of 205.6 µm s−1 (0.068 body length s−1) under 10 mT and 2 Hz field oscillation. The shallow flexion angle (10–24.5°) allows precision movements required to navigate narrow spaces. Upon arrival at the target site, the MMS beads unload their MSC cargo following exposure to a phosphate‐buffered saline (PBS) solution, mimicking the extracellular fluid's sodium concentration. The released stem cells have excellent viability and vitality, promoting rapid healing (i.e., 83.2% vs 49%) in a scratch‐wound assay. When paired with minimally invasive surgical methods, such as laparoscopy and endoscopic surgery, the microbot can provide precise stem cell delivery to hard‐to‐reach injury sites in the body to promote healing. Moreover, the microbot is designed to be highly versatile, with individual MMS beads customizable for cargoes of live cells, biomolecules, bionanomaterials, and pharmaceutical compounds for various therapeutic requirements.
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献