Affiliation:
1. Laboratory of Organic and Macromolecular Chemistry Friedrich Schiller University Jena Humboldtstrasse 10 07743 Jena Germany
2. Jena Center for Soft Matter (JCSM) Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
Abstract
AbstractThe COVID‐19 mRNA vaccines represent a milestone in developing non‐viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer‐based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity‐efficiency dilemma. Introducing anionic, hydrophilic, or “stealth” functionalities represents a promising approach to overcome this dilemma in gene delivery. Here, two sets of diblock terpolymers are created comprising hydrophobic poly(n‐butyl acrylate) (PnBA), a copolymer segment made of hydrophilic 4‐acryloylmorpholine (NAM), and either the cationic 3‐guanidinopropyl acrylamide (GPAm) or the 2‐carboxyethyl acrylamide (CEAm), which is negatively charged at neutral conditions. These oppositely charged sets of diblocks are co‐assembled in different ratios to form mixed micelles. Since this experimental design enables countless mixing possibilities, a machine learning approach is applied to identify an optimal GPAm/CEAm ratio for achieving high transfection efficiency and cell viability with little resource expenses. After two runs, an optimal ratio to overcome the toxicity‐efficiency dilemma is identified. The results highlight the remarkable potential of integrating machine learning into polymer chemistry to effectively tackle the enormous number of conceivable combinations for identifying novel and powerful gene transporters.
Funder
Bundesministerium für Bildung und Forschung
Thüringer Aufbaubank
European Regional Development Fund
Deutsche Forschungsgemeinschaft
Subject
Biomaterials,Biotechnology,General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献