Selective Catalytic Behavior Induced by Crystal‐Phase Transformation in Well‐Defined Bimetallic Pt‐Sn Nanocrystals

Author:

Werghi Baraa123ORCID,Wu Liheng12,Ebrahim Amani M.1ORCID,Chi Miaofang4ORCID,Ni Haoyang4ORCID,Cargnello Matteo23ORCID,Bare Simon R.13ORCID

Affiliation:

1. Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

2. Department of Chemical Engineering Stanford University Stanford CA 94305 USA

3. SUNCAT Center for Interface Science and Catalysis SLAC National Accelerator Laboratory Menlo Park CA 94025 USA

4. Center for Nanophase Materials Sciences Oak Ridge National Laboratory 5200, 1 Bethel Valley Rd Oak Ridge TN 37830 USA

Abstract

AbstractThe Pt‐Sn bimetallic system is a much studied and commercially used catalyst for propane dehydrogenation. The traditionally prepared catalyst, however, suffers from inhomogeneity and phase separation of the active Pt–Sn phase. Colloidal chemistry offers a route for the synthesis of Pt–Sn bimetallic nanoparticles (NPs) in a systematic, well‐defined, tailored fashion over conventional methods. Here, the successful synthesis of well‐defined ≈2 nm Pt, PtSn, and Pt3Sn nanocrystals with distinct crystallographic phases is reported; hexagonal close packing (hcp) PtSn and fcc Pt3Sn show different activity and stability depending on the hydrogen‐rich or poor environment in the feed. Moreover, face centred cubic (fcc) Pt3Sn/Al2O3, which exhibited the highest stability compared to hcp PtSn, shows a unique phase transformation from an fcc phase to an L12‐ordered superlattice. Contrary to PtSn, H2 cofeeding has no effect on the Pt3Sn deactivation rate. The results reveal structural dependency of the probe reaction, propane dehydrogenation, and provide a fundamental understanding of the structure−performance relationship on emerging bimetallic systems.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3