High Energy Storage Performance in BiFeO3‐Based Lead‐Free High‐Entropy Ferroelectrics

Author:

Wu Jie123ORCID,Tan Hua4,Qi He3ORCID,Yu Huifen3,Chen Liang3,Li Wenchao3,Chen Jun13

Affiliation:

1. Hainan University Haikou Hainan 570228 China

2. School of Mathematics and Physics University of Science and Technology Beijing Beijing 100083 China

3. Department of Physical Chemistry Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 China

4. School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractDielectric capacitors are widely used in advanced electrical and electronic systems due to the rapid charge/discharge rates and high power density. High comprehensive energy storage properties are the ultimate ambition in the field of application achievements. Here, the high‐entropy strategy is proposed to design and fabricate single‐phase homogeneous (Bi0.5Ba0.1Sr0.1Ca0.2Na0.1)(Fe0.5Ti0.3Zr0.1Nb0.1)O3 ceramic, the hierarchical heterostructure including rhombohedral‐tetragonal multiphase nanoclusters and locally disordered oxygen octahedral tilt can lead to the increased dielectric relaxation, diffused phase transition, diverse local polarization configurations, grain refinement, ultrasmall polar nanoregions, large random field, delayed polarization saturation and improved breakdown field. Accordingly, a giant Wrec ≈13.3 J cm−3 and a high η ≈78% at 66.4 kV mm−1 can be simultaneously achieved in the lead‐free high‐entropy BiFeO3‐based ceramic, showing an obvious advantage in overall energy‐storage properties over BiFeO3‐based lead‐free ceramics. Moreover, an ultrafast discharge rate (t0.9 = 18 ns) can be achieved at room temperature, concomitant with favorable temperature stability in the range of 20–160 °C, due to the enhanced diffuse phase transition and fast polarization response. This work provides a feasible pathway to design and generate dielectric materials exhibiting high comprehensive energy‐storage performance.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3