Intelligent Reconfiguration‐Promoted Cellular Internalization of Core–Shell DNA Nanoprobe Equipped with Successive Dual Stimuli‐Responsive Protective Satellites for Amplification Fluorescence Imaging of Tumor Cells

Author:

Pan Wenhao12ORCID,Niu Huimin23,Luo Shasha2,Chen Linhuan2,Wu Zai‐Sheng12ORCID

Affiliation:

1. Key Laboratory of Laboratory Medicine Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics School of Laboratory Medicine and Life Science Wenzhou Medical University Wenzhou 325035 China

2. Cancer Metastasis Alert and Prevention Center Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China

3. Fujian Key Laboratory of Aptamers Technology The 900th Hospital of Joint Logistics Support Force Fuzhou 350025 China

Abstract

AbstractAlthough DNA probes have attracted increasing interest for precise tumor cell identification by imaging intracellular biomarkers, the requirement of commercial transfection reagents, limited targeting ligands, and/or non‐biocompatible inorganic nanostructures has hampered the clinic translation. To circumvent these shortcomings, a reconfigurable ES‐NC (Na+‐dependent DNAzyme (E)‐based substrate (S) cleavage core/shell DNA nanocluster (NC)) entirely from DNA strands is assembled for precise imaging of cancerous cells in a successive dual‐stimuli‐responsive manner. This nanoprobe is composed of a strung DNA tetrahedral satellites‐based protective (DTP) shell, parallelly aligned target‐responsive sensing (PTS) interlayer, and hydrophobic cholesterol‐packed innermost layer (HCI core). Tetrahedral axial rotation‐activated reconfiguration of DTP shell promotes the exposure of interior hydrophobic moieties, enabling cholesterol‐mediated cellular internalization without auxiliary elements. Within cells, over‐expressed glutathione triggers the disassembly of the DTP protective shell (first stimulus), facilitating target‐stimulated signal transduction/amplification process (second stimuli). Target miRNA‐21 is detected down to 10.6 fM without interference from coexisting miRNAs. Compared with transfection reagent‐mediated counterpart, ES‐NC displays a higher imaging ability, resists nuclease degradation, and has no detectable damage to healthy cells. The blind test demonstrates that the ES‐NC is suitable for the identification of cancerous cells from healthy cells, indicating a promising tool for early diagnosis and prediction of cancer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3